Lipid-Protein Interactions Alter Line Tensions and Domain Size Distributions in Lung Surfactant Monolayers

Prajnaparamita Dhar,† Elizabeth Eck,‡ Jacob N. Israelachvili,‡ Younjin Min,§ Arun Ramachandran,¶ Alan J. Waring,|| and Joseph A. Zasadzinski**

†Department of Chemical Engineering, University of Kansas, Lawrence, Kansas; ‡Department of Chemical Engineering, University of California, Santa Barbara, California; §Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; ¶Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada; ||Departments of Medicine and Pediatrics, UCLA School of Medicine, Los Angeles, California; and **Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota

Supporting Material
Figure S1: Schematic of a two-dimensional liquid plane containing two phases separated by a line EE′

Derivation of Gibbs equation at a line interface:

Consider a 2-d liquid plane (analogous to a 3-d liquid column) with I number of components in two phases l₁ (α) and l₂ (β) separated from each other by a line. The (surface) composition of the ith component in the l₁ and l₂ phases are c\textsubscript{io} and c\textsubscript{id}. If n\textsubscript{i,o} and n\textsubscript{i,d} stand for the total moles of the ith component in the two phases, then we can define a line excess (analogous to Gibbs surface excess) where the line excess n\textsubscript{i,x} of the ith component should be

\[n_{i,x} = n_{i,t} - n_{i,o} - n_{i,d} \]

where n\textsubscript{i,t} is the total moles of the ith component for a given composition of the 2-d system.

The line excess internal energy:

\[E_{x} = E_{t} - E_{o} - E_{d} \]

where E\textsubscript{o} is the internal energy in the a phase, E\textsubscript{d} is the internal energy in the b phase, and E\textsubscript{t} is the total internal energy.

Similarly, the entropy may be given by

\[S_{x} = S_{t} - S_{o} - S_{d} \]

For an open system:

\[dE_{t} = TdS_{t} - dW + \sum_{i}^{I} \mu_{i} dn_{i} \]

where \[dW = \pi_{So} dA_{o} + \pi_{Sd} dA_{d} - \lambda dl \]

A\textsubscript{o} and A\textsubscript{d} stand for the actual area in the two phases, π\textsubscript{o} and π\textsubscript{d} are the surface pressures in the two phases, \λ is the interfacial (line) tension, and \µ\textsubscript{i} is the chemical potential of the ith component. Substituting for dW (Eq. 5) in Eq. 4, we get an expression for the change in the total internal energy in terms of the surface pressures:

\[dE_{t} = TdS_{t} - \pi_{So} dA_{o} - \pi_{Sd} dA_{d} + \lambda dl + \sum_{i}^{I} \mu_{i} dn_{i} \]

The changes in the internal energy in the idealized phases l₁ and l₂ may be expressed as:

\[dE_{o} = TdS_{o} - \pi_{So} dA_{o} + \sum_{i}^{I} \mu_{i} dn_{i} \]

\[dE_{d} = TdS_{d} - \pi_{Sd} dA_{d} + \sum_{i}^{I} \mu_{i} dn_{i} \]

Note that the idealized systems have two two-dimensional phases without any physical interface.
The line excess internal energy difference may then be written as (Eq (6) –((7)+(8))):

\[dE^x = TdS^x + \lambda dl + \Sigma_i \mu_i dn_i^x\]
(9)

Integrating equation 9, with T, \(\lambda \), and \(\mu_i \) constant gives:

\[E^x = TS^x + \lambda l + \Sigma_i \mu_i n_i^x\]
(10)

In general, if we differentiate equation 10, we get

\[dE^x = TdS^x + S^x dT + \lambda dl + l d\lambda + \Sigma_i \mu_i d n_i^x + \Sigma_i n_i^x d \mu_i\]
(11)

Since (9) = (11) we get:

\[-l d\lambda = S^x dT + \Sigma_i n_i^x d \mu_i\]
(12)

Dividing throughout by \(l \) we get

\[-d\lambda = \frac{S^x}{l} dT + \Sigma_i \frac{n_i^x}{l} d \mu_i\]
(13)

In equation 13, \(\frac{S^x}{l} = S^x_\sigma \) is the line excess entropy per unit length and \(\frac{n_i^x}{l} = \Gamma_i^x \) is the number of moles of the \(i \)th component per unit length. Then equation 13 may be rewritten as

\[-d\lambda = S^x_\sigma dT + \Sigma_i \Gamma_i^x d \mu_i\]
(14)

Since the magnitudes of \(S^x_\sigma \) and \(\Gamma_i^x \) are dependent on the position x of the line EE’, we can fix the position of the line such that \(n_i^x = n_{i0} + n_{id} \) and \(n_i^x = 0 \). Further, if the two phases are at the same temperature then, equation 14 can be converted to the form

\[-d\lambda = \Sigma_i \Gamma_i^1 d \mu_i\]
(15)

and \(\Gamma_i^1 = \Gamma_i^x - \Gamma_i^x \frac{c_{i0} - c_{id}}{c_{i10} - c_{i1d}} \) is defined as the relative line excess of a species in solvent 1. Since \(\mu_i = \mu_i^0 + RT \ln a_i \), substituting this in equation 15 gives

\[-d\lambda = RT \Sigma_i \Gamma_i^1 d \ln a_i = RT \Sigma_i \Gamma_i^1 f d \ln c_i\]

This is analogous to Gibbs Adsorption Equation\(^1\) to a surface.